Development and Evaluation of a Novel Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO₂ Capture

Yongqi Lu¹, Xinhuai Ye¹, Manoranjan Sahu¹, Massoud Rostam-Abadi^{1,2}, Andrew Jones³

¹Illinois State Geological Survey, University of Illinois at Urbana-Champaign; ² Dept. of Environmental Eng., University of Illinois at Urbana-Champaign; ³ U.S. Department of Energy, National Energy Technology Laboratory

Cost Breakdown of Benchmark MEA Process

- Benchmark MEA process
 - > 86% increase in Cost of Electricity (COE)
 - > 60% of total cost contributed by parasitic power loss

Parasitic Power Consumption of Absorption-Based Process

Energy use components

- CO₂ desorption (steam use)
 - Heat of absorption (rxn heat)
 - Sensible heat (heat for ∆T between CO₂-rich and lean solvents)
 - Stripping heat (water vaporization)
- □ CO₂ compression work
- Auxiliary work
 - Work for CDR
 - Others

Energy use Breakdown of Benchmark MEA Process

Energy intensive:

- High heat of reaction
- Low working capacity (high L/G and sensible heat)
- Low pressure stripping (high stripping heat + high compression work)

Hot Carbonate Absorption Process with High Pressure Stripping Enabled by Crystallization (Hot-CAP): Process Flow Diagram

- Absorption at 70-80 °C
- Working capacity of 40%wt (equivalent) PC: ~15-40% carbonate-to-bicarbonate conversion
- ☐ Crystallization at room temperature (~30°C)
- ☐ Stripping of bicarbonate slurry at up to ~40 atm

Major Reactions

$$SO_4^{2-}$$
 reclamation
 $K_2SO_4 + CaO + 3H_2O + 2CO_2 =$
 $2KHCO_3 + CaSO_4 \cdot 2H_2O(s) \downarrow$

$$CO_2 \text{ absorption at } 70-80^{\circ}C$$

$$CO_2 + H_2O + K_2CO_3 = 2KHCO_3$$

$$SO_2 + 1/2O_2 + K_2CO_3 = K_2SO_4 + CO_2$$

$$Crystallization \text{ at } 30^{\circ}C$$

 $KHCO_3 = KHCO_3(s) \downarrow$

$$CO_2$$
 desorption at $\geq 140^{\circ}C$
 $KHCO_3 = CO_2(g) \uparrow + H_2O + K_2CO_3$

Hot-CAP vs. MEA

Items	MEA	Hot-CAP
Solvent	30wt% MEA	40wt% K ₂ CO ₃
Solvent degradation	Y	N
Corrosion	Y	Insignificant
Absorption temperature	40-50 °C	70-80 °C
Stripping temperature	120 °C	140-200 °C
Stripping pressure	2 atm	8-40 atm
Phase change bw. absorb. and stripping	N	Crystallization
FGD required	Y	N

Technical Risks

Risk	Mitigation	
A. Insufficient rate of CO ₂ absorption	Develop promoters/catalysts & reconfigure absorption column	
B. Stripping pressure not high enough (e.g.,<10 atm)	Develop a sodium bicarbonate-based slurry	
C. Heat exchanger and crystallizer fouling	Vender consultation, engineering analysis and customized design	
D. Insufficient cooling rate in crystallizer affects cost/space	Same as above	
E. Stripper required to handle slurry and high pressure	Same as above	

(a) CO₂ Absorption

Vapor-liquid equilibrium of CO₂-K₂CO₃/KHCO₃ (40%wt) system

- VLE data show 90% CO₂ removal (P_{CO₂}=2 -0.2 psia) is possible
 - 40%wt PC-equivalent solution

Data Source: Kohl & Nielsen. Gas Purification 5th Edition, Houston: Gulf Publishing, Houston, 1997.

Stirred Tank Reactor (STR) Experimental Setup for Absorption Tests

■ Instant flux of CO₂ absorption

$$J_{CO2} = \frac{dP_{CO2}}{dt} \frac{V_g}{R T A_{GL}}$$

CO₂ Absorption into 40 wt% PC w/o and with Catalysts

(* Rates measured in a stirred tank reactor (STR) with minimal gas phase diffusion resistance)

Enhancement factor (E)	4wt% CAT1	4wt% CAT2
E (60°C)	2.16	2.36
E (70°C)	1.86	2.00
E (80°C)	1.88	2.12

- Two inorganic catalysts, CAT1 and CAT2, identified more effective than other tested inorganic catalysts
- Addition of 4 wt% CAT1 or CAT2 raised rate by 2 times at 60, 70, 80°C

Comparison with CO₂ Absorption into MEA Solution

- Comparison with 3M MEA with 40% conversion (MEA3-40) at 50°C
 - > STR rates into PC40-20 w/o a catalyst at 80°C were 7-18 times slower
 - Rates into PC40-20 with CAT2 at 80°C were 3-5 times slower
- □ Rate difference between MEA and PC40 is smaller in a packed-bed column than a STR because of the significant effect of gas phase diffusion for the MEA in a packed bed

(b) Bicarbonate Crystallization

- ☐ Bicarbonate will crystallize from A to C when cooled to 30°C
- Crystallization not occurring in absorption column (B to A)

A: at the bottom of absorption column

C: Crystallizer

B: at the top of absorption column (equiv. to C heated to 70-80°C

Data Source: Kohl & Nielsen. Gas Purification 5th Edition, Houston: Gulf Publishing, Houston, 1997.

Kinetic Feasibility of Bicarbonate Crystallization

- 40wt% PC solution with 40% conversion (PC40-40) employed
- Starting T=70°C to end T=25-45°C
- Rate of crystallization controlled by cooling rate
 - Crystals formed immediately with decreasing T and preceded continuously
 - In rapid cooling, rate could be limited by nucleation

Analysis of Crystal Products

- High purity kalicinite (KHCO₃) prevailed in products
- More needle-shape crystals at lower cooling rate
- Small deposits on crystal surface at faster cooling
- Yield of KHCO₃ crystals (~50%) determined by end T

(c) High Pressure Stripping

- Assuming ~50%wt slurry, 30% change of K₂CO₃to-KHCO₃ conversion (100%-70%), 140 °C
 - Working capacity of PC in stripper similar to MEA but $C_p = \sim 1/2$ of MEA
 - > 5-10 atm CO₂ partial pressure
- □ Higher stripping pressure (20-40 atm) possible at higher T, higher concentration of slurry, and higher K₂CO₃-to-KHCO₃ conversion in solution

Solubility of bicarbonate in carbonate solution

Vapor-liquid equilibrium of CO₂-K₂CO₃/KHCO₃ (40%wt) system

Technical Option to Further Increase Stripping Pressure

- Stripping pressure could be further increased by using Na₂CO₃/NaHCO₃ slurry for CO₂ desorption
 - Solubility of NaHCO₃ is ~half of KHCO₃
 - Equilibrium pressure of CO₂- Na₂CO₃/NaHCO₃ is higher

Crystallization at
$$30^{\circ}C$$

 $KHCO_3 + Na_2CO_3 = NaHCO_3(s) \downarrow + K_2CO_3$

$$CO_2$$
 desorption at $\geq 140^{\circ}C$
 $NaHCO_3 = CO_2(g) \uparrow + H_2O + Na_2CO_3$

Competitive Crystallization between NaHCO₃ and KHCO₃

☐ XRD result indicates NaHCO₃ can precipitate from KHCO₃+Na₂CO₃ system

Sample1 = 40%wt PC with 40% conversion, cooling from 75-25 °C Sample2 = 40%wt PC with 40% conversion + 10%wt Na₂CO₃, cooling from 75-25 °C

Advantages of Hot-CAP

- High stripping pressure
 - Low compression work
 - Low stripping heat (high CO₂/H₂O ratio)
- Low sensible heat
 - Comparable working capacity to MEA
 - > Low Cp (1/2)
- Low heat of absorption
 - > 7-17 kcal/mol CO₂ (crystallization heat incld.) vs. 21 kcal/mol for MEA
- ☐ FGD may not be required
- No solvent degradation
- Lower cost than amines
- Less corrosive than amines

Energy Use Comparison bw. Hot-CAP and MEA

Items	MEA	Hot-CAP
Energy Consumption		
CO ₂ desorption		
Heat of absorption (Btu/lbCO ₂)	825	600
Sensible heat (Btu/lbCO ₂)	600	300
Stripping heat (Btu/lbCO ₂)	270	30
Electricity equivalent (kWh/ kg CO ₂)	0.23 (based on 120°C steam)	0.17 (based on 140-200°C steam)
Compression work (kWh/ kg CO ₂)	0.10	0.03
Total electricity (kWh/kg CO ₂)	0.33	0.20
Operating		
Degradation (kg MEA/ ton CO ₂)	2	0
FGD Required	Y	N

Hot-CAP system projected to have overall 40% less parasitic power than benchmark MEA system

Summaries

- Hot-CAP can achieve 90% CO₂ removal
- Parasitic power loss reduced by ~40% compared to MEA
- Crystallization in absorption column is prevented
- Absorption is decoupled from desorption, but to reduce absorber size, an effective absorption promoter/catalyst is required
- ☐ Crystallization process is fast and rate is controlled by cooling rate

- Ongoing and future work activities
 - Screening tests of absorption promoters/catalysts
 - Bench-scale absorption and high-pressure stripping column tests
 - Risk mitigation studies

Acknowledgements

- U.S. Department of Energy/ National Energy Technology Laboratory under Agreement No. DE-FE0004360
- □ Illinois Department of Commerce and Economic Opportunity through the Office of Coal Development and the Illinois Clean Coal Institute under Project No. 11/US-6